Adiabatically tapered hyperbolic metamaterials for dispersion control of high-k waves.

نویسندگان

  • Paul R West
  • Nathaniel Kinsey
  • Marcello Ferrera
  • Alexander V Kildishev
  • Vladimir M Shalaev
  • Alexandra Boltasseva
چکیده

Hyperbolic metamaterials (HMMs) have shown great promise in the optical and quantum communities due to their extremely large, broadband photonic density of states. This feature is a direct consequence of supporting photonic modes with unbounded k-vectors. While these materials support such high-k waves, they are intrinsically confined inside the HMM and cannot propagate into the far-field, rendering them impractical for many applications. Here, we demonstrate how the magnitude of k-vectors can be engineered as the propagating radiation passes through media of differing dispersion relations (including type II HMMs and dielectrics) in the in-plane direction. The total outcoupling efficiency of waves in the in-plane direction is shown to be on average 2 orders of magnitude better than standard out-of-plane outcoupling methods. In addition, the outcoupling can be further enhanced using a proposed tapered HMM waveguide that is fabricated using a shadowed glancing angle deposition technique; thereby proving the feasibility of the proposed device. Applications for this technique include converting high-k waves to low-k waves that can be out-coupled into free-space and creating extremely high-k waves that are quickly quenched. Most importantly, this method of in-plane outcoupling acts as a bridge through which waves can cross between the regimes of low-k waves in classical dielectric materials and the high-k waves in HMMs with strongly reduced reflective losses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metamaterials and Transformation Optics for Single-photon Emitters

We have experimentally demonstrated the broadband enhancement of single-photon emission from nanodiamond NV centers coupled to planar multilayer metamaterial with hyperbolic dispersion. A tapered metamaterial waveguide for efficient outcoupling of high-k metamaterial modes has been numerically studied and fabricated. Introduction: The major thrust of research in quantum photonics is to build qu...

متن کامل

Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition

We investigated a multilayer graphene–dielectric composite material, comprising graphene sheets separated by subwavelength-thick dielectric spacer, and found it to exhibit hyperbolic isofrequency wavevector dispersion at farand mid-infrared frequencies, allowing propagation of waves that would be otherwise evanescent in an isotropic dielectric. Electrostatic biasing was considered for tunable a...

متن کامل

Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials.

We demonstrate experimentally signatures and dispersion control of surface plasmon polaritons from 1 to 1.8 µm using periodic multilayer metallo-dielectric hyperbolic metamaterials. The fabricated structures are comprised of smooth films with very low metal filling factor. The measured dispersion properties of these hyperbolic metamaterials agree well with calculations using transfer matrix, fi...

متن کامل

Engineering photonic density of states using metamaterials

The photonic density of states (PDOS), like its electronic counterpart, is one of the key physical quantities governing a variety of phenomena and hence PDOS manipulation is the route to new photonic devices. The PDOS is conventionally altered by exploiting the resonance within a device such as a microcavity or a bandgap structure like a photonic crystal. Here we show that nanostructured metama...

متن کامل

Physical nature of volume plasmon polaritons in hyperbolic metamaterials.

We investigate electromagnetic wave propagation in multilayered metal-dielectric hyperbolic metamaterials (HMMs). We demonstrate that high-k propagating waves in HMMs are volume plasmon polaritons. The volume plasmon polariton band is formed by coupling of short-range surface plasmon polariton excitations in the individual metal layers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2015